skip to main content


Search for: All records

Creators/Authors contains: "Brouard, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lewandowski, H. (Ed.)
    Covariance mapping is widely used to study correlations of different variables in the dataset. The power of the method has been demonstrated in multi-particle imaging, including two- and three-body covariance on molecules of biological relevance and Coulomb explosion imaging (CEI) of molecular dissociation dynamics. While covariance for two particles is rather straightforward, for four-body correlations, one needs to extend covariance mapping to cumulant mapping, which has been tested in recent measurements of strong field ionization of formaldehyde. Here, I will discuss the details of how to compute cumulant mapping for the momentum sum of all four fragments of the formaldehyde molecule, and how one can perform the calculation with a faster and better algorithm. 
    more » « less
  2. We report on the use of extreme ultraviolet (XUV, 30.3 nm) radiation from the Free-electron LASer in Hamburg (FLASH) and visible (Vis, 405 nm) photons from an optical laser to investigate the relaxation and fragmentation dynamics of fluorene ions. The ultrashort laser pulses allow to resolve the molecular processes occurring on the femtosecond timescales. Fluorene is a prototypical small polycyclic aromatic hydrocarbon (PAH). Through their infrared emission signature, PAHs have been shown to be ubiquitous in the universe, and they are assumed to play an important role in the chemistry of the interstellar medium. Our experiments track the ionization and dissociative ionization products of fluorene through time-of-flight mass spectrometry and velocity-map imaging. Multiple processes involved in the formation of each of the fragment ions are disentangled through analysis of the ion images. The relaxation lifetimes of the excited fluorene monocation and dication obtained through the fragment formation channels are reported to be in the range of a few tens of femtoseconds to a few picoseconds. 
    more » « less
  3. Abstract Polycyclic aromatic hydrocarbons (PAHs) play an important role in interstellar chemistry and are subject to high energy photons that can induce excitation, ionization, and fragmentation. Previous studies have demonstrated electronic relaxation of parent PAH monocations over 10–100 femtoseconds as a result of beyond-Born-Oppenheimer coupling between the electronic and nuclear dynamics. Here, we investigate three PAH molecules: fluorene, phenanthrene, and pyrene, using ultrafast XUV and IR laser pulses. Simultaneous measurements of the ion yields, ion momenta, and electron momenta as a function of laser pulse delay allow a detailed insight into the various molecular processes. We report relaxation times for the electronically excited PAH * , PAH +* and PAH 2+* states, and show the time-dependent conversion between fragmentation pathways. Additionally, using recoil-frame covariance analysis between ion images, we demonstrate that the dissociation of the PAH 2+ ions favors reaction pathways involving two-body breakup and/or loss of neutral fragments totaling an even number of carbon atoms. 
    more » « less